The G-protein alpha-subunit GasC plays a major role in germination in the dimorphic fungus Penicillium marneffei.
نویسندگان
چکیده
The opportunistic human pathogen Penicillium marneffei exhibits a temperature-dependent dimorphic switch. At 25 degrees, multinucleate, septate hyphae that can undergo differentiation to produce asexual spores (conidia) are produced. At 37 degrees hyphae undergo arthroconidiation to produce uninucleate yeast cells that divide by fission. This work describes the cloning of the P. marneffei gasC gene encoding a G-protein alpha-subunit that shows high homology to members of the class III fungal Galpha-subunits. Characterization of a DeltagasC mutant and strains carrying a dominant-activating gasC(G45R) or a dominant-interfering gasC(G207R) allele show that GasC is a crucial regulator of germination. A DeltagasC mutant is severely delayed in germination, whereas strains carrying a dominant-activating gasC(G45R) allele show a significantly accelerated germination rate. Additionally, GasC signaling positively affects the production of the red pigment by P. marneffei at 25 degrees and negatively affects the onset of conidiation and the conidial yield, showing that GasC function overlaps with functions of the previously described Galpha-subunit GasA. In contrast to the S. cerevisiae ortholog Gpa2, our data indicate that GasC is not involved in carbon or nitrogen source sensing and plays no major role in either hyphal or yeast growth or in the switch between these two forms.
منابع مشابه
A p21-Activated Kinase Is Required for Conidial Germination in Penicillium marneffei
Asexual spores (conidia) are the infectious propagules of many pathogenic fungi, and the capacity to sense the host environment and trigger conidial germination is a key pathogenicity determinant. Germination of conidia requires the de novo establishment of a polarised growth axis and consequent germ tube extension. The molecular mechanisms that control polarisation during germination are poorl...
متن کاملMorphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei.
Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host l...
متن کاملG-Protein Signaling Mediates Asexual Development at 25°C but Has No Effect on Yeast-Like Growth at 37°C in the Dimorphic Fungus Penicillium marneffei
متن کامل
Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei.
Penicillium marneffei is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, P. marneffei grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, P. marneffei ...
متن کاملThe RFX protein RfxA is an essential regulator of growth and morphogenesis in Penicillium marneffei.
Fungi are small eukaryotes capable of undergoing multiple complex developmental programs. The opportunistic human pathogen Penicillium marneffei is a dimorphic fungus, displaying vegetative (proliferative) multicellular hyphal growth at 25 degrees C and unicellular yeast growth at 37 degrees C. P. marneffei also undergoes asexual development into differentiated multicellular conidiophores beari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 164 2 شماره
صفحات -
تاریخ انتشار 2003